
LM42P

Love(L) Machine(M) For(4) Two(2) People(P)

by an anonymous author

An open source document presenting the LM42P $\,$

Lausanne

April 18, 2025

Contents

Ι	DI	\mathbf{Y}	5
1	m2		9
	1.1	housing	9
		1.1.1 Parts list	9
		1.1.2 sheet	10
		1.1.3 motor-sheet	11
		1.1.4 u	13
		1.1.5 drillator	17
		1.1.6 drillator-m	19
		1.1.7 stop	21
		1.1.8 spacer	22
	1.2	linear guide	23
		1.2.1 Parts list	23
		1.2.2 Drawing	23
	1.3	block	25
		1.3.1 Parts list	25
		1.3.2 junction block	26
		1.3.3 belt	31
		1.3.4 clamp	32
		1.3.5 screw	34
		1.3.6 stop	36
		1.3.7 Assembling Instructions	37
		1.3.8 alignator	38
	1.4	motor	44
		1.4.1 Parts list	44
		1.4.2 Drawing	44
		1.4.3 Assembling Instructions	46
	1.5	idle pulley	47
		1.5.1 Parts list	47
		1.5.2 Drawing	47
		1.5.3 Assembling Instructions	49
	1.6	attachment	49
		1.6.1 Parts list	50
		1.6.2 Drawing	51
		1.6.3 Manufacturing Instructions	51
	1.7	Assembling Instructions	52
		1.7.1 drillator	63

4 CONTENTS

		1.7.2	tensionator
2	m2	accesso	ories 67
	2.1	rod .	
		2.1.1	Parts list
		2.1.2	Drawing
		2.1.3	Manufacturing Instructions
		2.1.4	Assembly Instructions
	2.2	suction	n cup dildo adapter
		2.2.1	Parts list
		2.2.2	Drawing
		2.2.3	Manufacturing Instructions
3	Sha	ped To	pols 77
	3.1	perper	ndiculator
		3.1.1	Roadmap
		3.1.2	Parts list
		3.1.3	Tools list
		3.1.4	Shaped parts
		3.1.5	Normalized parts
		3 1 6	A scombling 00

Part I DIY

Here you can find informations about how to get a $\mathbf{LM42P}$. Actually, there are two variants available either:

- m1;
- m2.

Here is some information that is good to know before starting to build your machine.

- For the 3D-printed parts, all files are located in the directory named 3d-print-files, which is inside the parent directory named after the corresponding part.
- All part names are marked in **bold**.
- Apply threadlock to the screws.

Chapter 1

m2

1.1 housing

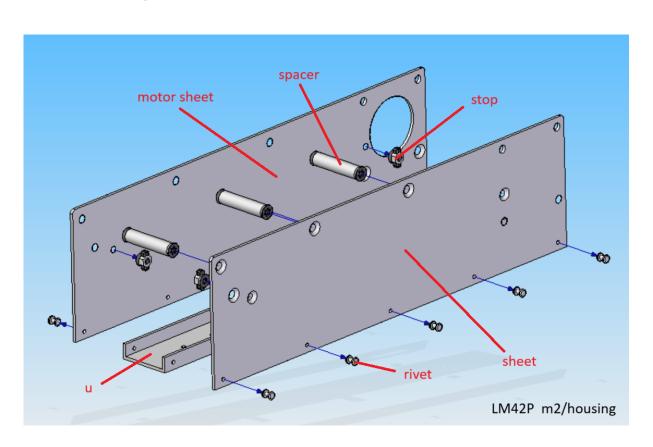


Figure 1.1: m2 housing parts

1.1.1 Parts list

Qty	Part	Description	Material
1	u	10x35x250	aluminium
1	sheet	86x305x2	aluminium
1	motor sheet	86x305x2	aluminium
4	stop	13.7x33x4	aluminium
3	spacer	see section spacer	_
10	rivet	$2.4 \times 8 \text{ mm}$	aluminium

Table 1.1: Parts list of housing

1.1.2 sheet

This section describes the manufacturing process for the part called **sheet**.

Drawing

See Figure 1.2, page 10.

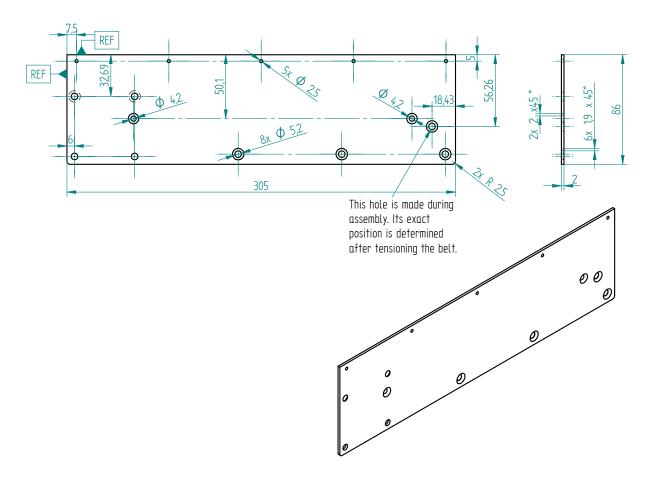


Figure 1.2: Drawing of the **sheet** part

Required Tools and Components

Below is the list of materials required to produce the part named **sheet**.

1.1. HOUSING

```
• 1x sheet dimensions: 86x305x2 material: aluminium;
```

- 1x steel rule;
- 1x file;
- 1x drillator see section drillator 1.1.5, p. 17;
- 1x drillator-m see section drillator-m 1.1.6, p. 19;
- 4x clamp;
- 2x **2.5** mm drill bit ;
- 1x **4.2** mm drill bit;
- 1x **5.2** mm drill bit;
- 1x chamfering tool;
- 1x drill press.

Manufacturing Instructions

- 1. use a **file** to remove all sharp edges;
- 2. carefully determine which face requires protection before proceeding;
- 3. align and clamp the **drillator-m**, using the top-left corner as a reference, this is important for proper alignment;
- 4. center punch all holes using a **2.5 mm drill bit**;
- 5. remove the **drillator-m**;
- 6. using the same drill bit, drill the two holes positioned at the far-left edge, one at the uppermost and one at the lowermost position;
- 7. using two **2.5 mm drill bits**, align and clamp the **drillator**;
- 8. center punch all holes;
- 9. remove the **drillator**;
- 10. drill all holes;
- 11. chamfer all holes (use a screw to check the chamfer depth);
- 12. use a file to create both R 2.5 mm radii;
- 13. remove the protective film or masking.

1.1.3 motor-sheet

This section describes the manufacturing process for the part called **motor-sheet**.

Drawing

See Figure 1.3, page 12.

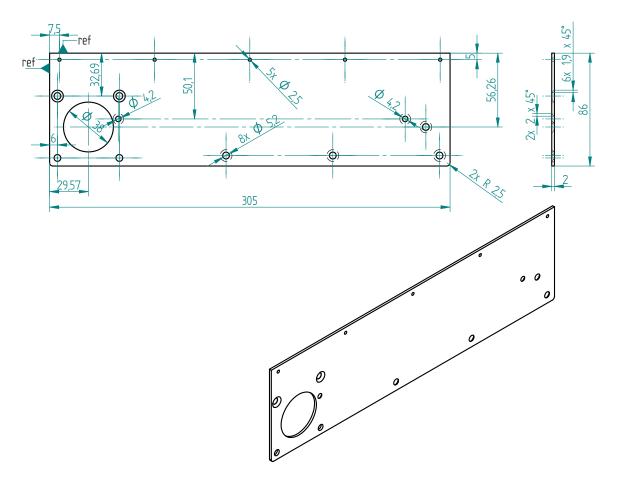


Figure 1.3: Drawing of the motor-sheet part

Required Tools and Components

Below is the list of materials required to produce the part named **motor-sheet**.

- 1x sheet dimensions: 86x305x2 material: aluminium;
- 1x flat/convex file;
- 1x drillator see section drillator 1.1.5, p. 17;
- 1x drillator-m see section drillator-m 1.1.6, p. 19;
- 1x scribe;
- 4x **clamp**;
- 2x **2.5** mm drill bit;
- 1x **4.2** mm drill bit;

1.1. HOUSING

- 1x **5.2** mm drill bit;
- 1x jigsaw;
- 1x chamfering tool;
- 1x drill press.

Manufacturing Instructions

- 1. use a **file** to remove all sharp edges;
- 2. carefully determine which face requires protection before proceeding;
- 3. align and clamp the **drillator-m**, using the top-left corner as a reference, this is important for proper alignment;
- 4. using a scriber, mark the outline of the 38 mm diameter hole;
- 5. center punch all holes using a 2.5 mm drill bit;
- 6. remove the **drillator-m**;
- 7. using the same drill bit, drill the two holes positioned at the far-left edge, one at the uppermost and one at the lowermost position;
- 8. using two **2.5 mm drill bits**, align and clamp the **drillator**;
- 9. center punch all holes;
- 10. remove the **drillator**;
- 11. drill all holes;
- 12. chamfer all holes (use a screw to check the chamfer depth);
- 13. use a file to create both R 2.5 mm radii;
- 14. using a **jigsaw**, cut as close as possible to the 38 mm diameter outline;
- 15. Using a flat/convex file, file the 38 mm hole until the motor fits through;
- 16. remove the protective film or masking.

1.1.4 u

This section describes the manufacturing process for the part called **u**.

Drawing

See Figure 1.4, page 14.

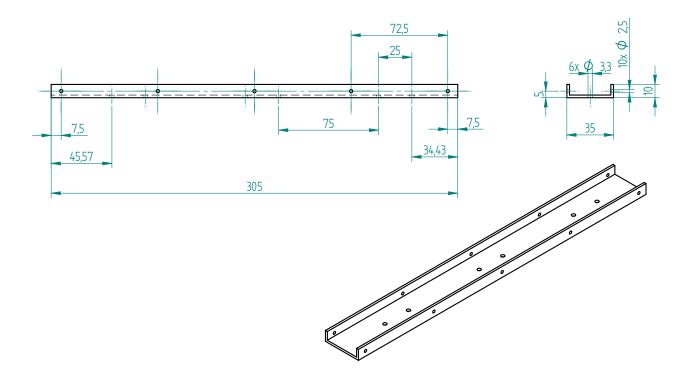


Figure 1.4: Drawing of the ${\bf u}$ part

1.1. HOUSING 15

Required Tools and Components

Below is the list of materials required to produce the part named \mathbf{u} .

- 1x square tube dimension: 35x35x2x305 material: aluminium;
- 1x gauge minimum length: 305 mm;
- 1x try square;
- 1x steel rule ;
- 1x scriber;
- 1x hand saw;
- 1x perpendicaltor;
- 1x file;
- 1x rail (see section linear-guide 1.2, p. 23);
- 2x clamp;
- 1x 3.5 mm drill bit;
- 1x **3.3** mm drill bit;
- 1x 2.5 mm drill bit;
- 1x chamfering tool;
- 1x drill press.

Manufacturing Instructions

- 1. scribe a line with a **scriber**, leaving approximately 0.3 mm of extra material beyond the final total length;
- 2. cut the square tube to length using a handsaw and a try square;
- 3. use the **perpendiculator** to ensure both ends are square;
- 4. scribe two lines using the **scriber**, each about 0.3 mm from the edge of the squared **square tube**;
- 5. cut the square tube along the scribed lines using the handsaw;
- 6. use a file to clean the cuts and chamfer the edges;
- 7. clamp the **rail** in the correct position using a **gauge** (make sure it's centered), see Figure 1.5, page 16;

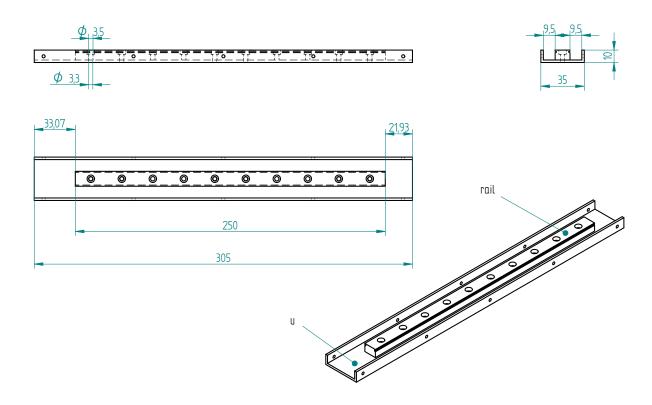


Figure 1.5: Center punch the 3.3 mm hole through the ${\bf rail}$ using a ${\bf 3.5}$ mm ${\bf drill}$ ${\bf bit}$

1.1. HOUSING 17

- 8. mark the positions of the six 3.3 mm holes using a **3.5 mm drill bit** to center punch;
- 9. drill the six holes using a **3.3 mm drill bit** (do not drill the 2.5 mm holes yet—those will be drilled with the sheets);
- 10. chamfer the six holes using a **chamfering tool**;
- 11. clamp the **sheet** in place;
- 12. center punch the five holes using a **2.5 mm drill bit**;
- 13. clamp the **motor sheet**;
- 14. center punch the five holes using a **2.5 mm drill bit**;
- 15. drill all ten holes using a **2.5 mm drill bit**;
- 16. chamfer the six holes using a **chamfering tool**.

1.1.5 drillator

This section describes the manufacturing process for the part called **drillator**.

Remark: If your 3D printer has a large enough build volume, you can print the **drillator** and **drillator-m** in one piece, which improves alignment accuracy.

Drawing

See Figure 1.6, page 18.

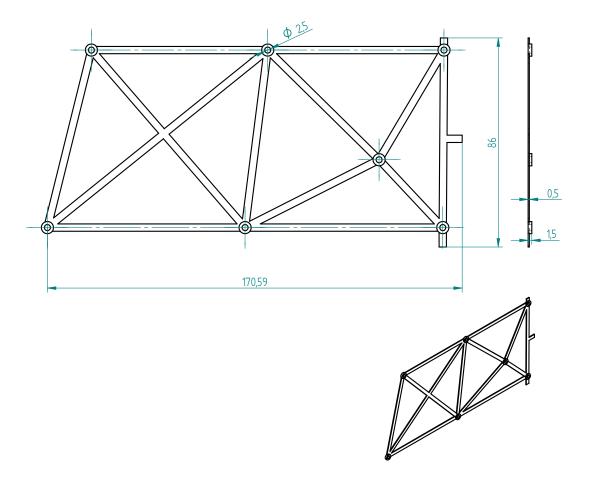


Figure 1.6: Drawing of the ${\bf drillator}$ part

1.1. HOUSING 19

Required Tools and Components

Below is the list of materials required to produce the part named **drillator**.

- 1x 3d printer;
- 1x **PLA**;
- 1x file;
- 1x **drill**;
- 1x 2.5 mm drill bit.

Manufacturing Instructions

- 1. 3D print the part using the files located in the 3d-print-files directory;
- 2. chamfer the edges using a **file**;
- 3. drill the 2.5 mm holes using a **2.5 mm drill bit** and a **drill**.

1.1.6 drillator-m

Remark: If your 3D printer has a large enough build volume, you can print the **drillator** and **drillator-m** in one piece, which improves alignment accuracy.

Drawing

See Figure 1.7, page 20.

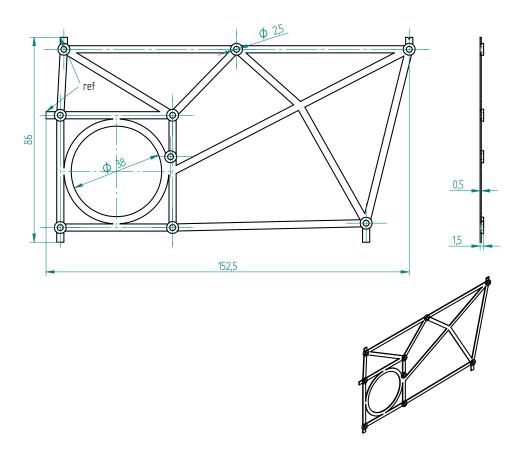


Figure 1.7: Drawing of the $\mathbf{drillator-m}$

1.1. HOUSING 21

Required Tools and Components

Below is the list of materials required to produce the part named **drillator**.

- 1x 3d printer;
- 1x **PLA** ;
- 1x file;
- 1x drill;
- 1x 2.5 mm drill bit.

Manufacturing Instructions

- 1. 3D print the part using the files located in the 3d-print-files directory;
- 2. chamfer the edges using a **file**;
- 3. drill the 2.5 mm holes using a **2.5 mm drill bit** and a **drill**.

1.1.7 stop

Drawing

See Figure 1.8, page 21.

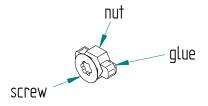


Figure 1.8: Drawing of the **stop**

Parts list

Table 1.2: Parts list of housing/stop

quantity	name	specification	material
4x1=4	screw	$M4 \times 6$ mm Torx flat head screw	stainless steel
4x1=4	\mathbf{nut}	standard M4 hex nut	stainless steel
-	${f glue}$	black	Poliflex 444

1.1.8 spacer

Drawing

See Figure 1.9, page 22.

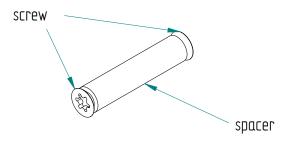


Figure 1.9: Drawing of the **spacer**

Parts list

Table 1.3: Parts list of housing/spacer

Qty	Part	Description	Material
3x2=6	screw	$M5 \times 12 \text{ mm}$ Torx flat head screw	stainless steel
3x1=3	spacer	$M5 \times 8 \times 35 \text{ mm}$	aluminium

1.2. LINEAR GUIDE

1.2 linear guide

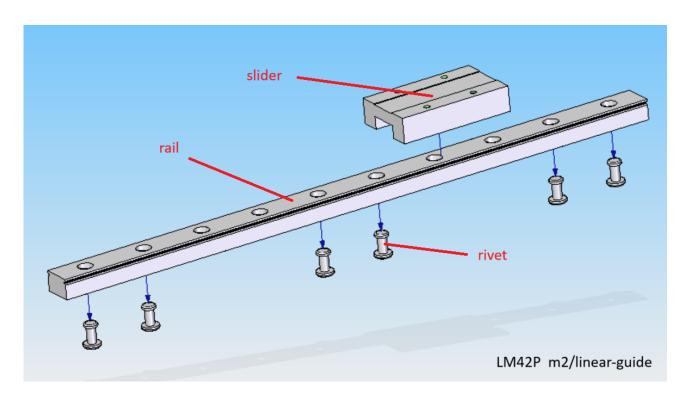


Figure 1.10: m2 linear guide parts

1.2.1 Parts list

Table 1.4: Parts list of linear guide

Qty	Part	Description	Material
1	rail	MGN12H, length: 250 mm	-
1	slider	$MGN12H$, $27 \times 45.4 \text{ mm}$	-
6	rivet	$3.2 \times 10 \text{ mm}$	aluminium

1.2.2 Drawing

See Figure 1.11, page 24.

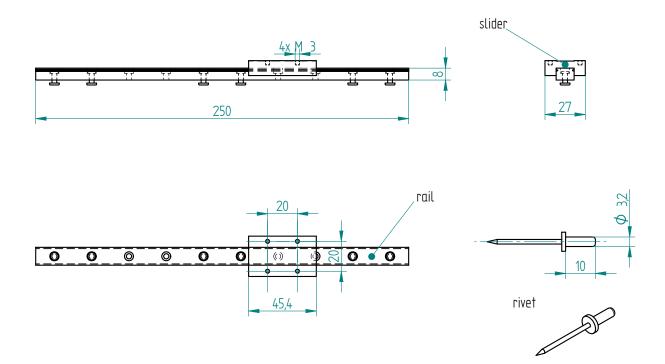
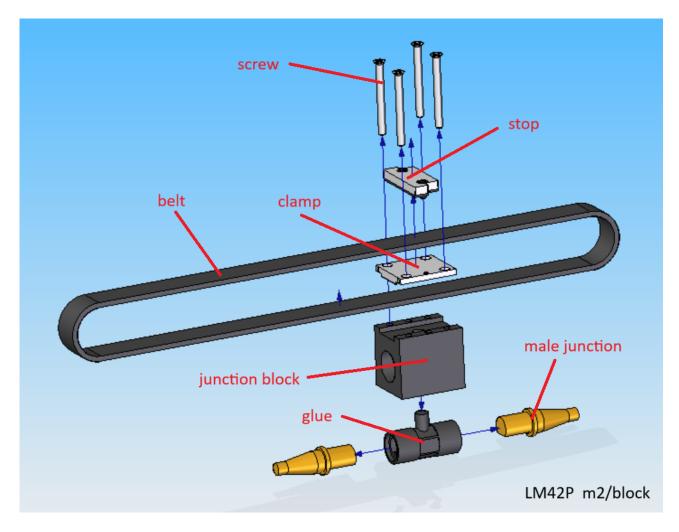
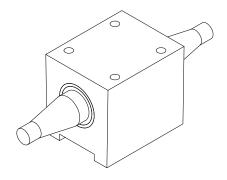


Figure 1.11: Drawing of the linear guide parts

1.3. BLOCK 25

1.3 block




Figure 1.12: m2 block parts

1.3.1 Parts list

Table 1.5: Parts list of block

$\overline{\text{Qty}}$	Part	Description	Material
1	junction block	3D printed	nylon
1	glue	casted	epoxy
2	male junction	google: pool cue junction	brass
1	belt	HTD 3	-
1	clamp	HTD 3	aluminium
1	stop	subassemblie (see section)	see section \mathbf{stop}
4	screw	$M3 \times 36$ mm flat head screw	stainless steel

1.3.2 junction block

Drawing

See Figure 1.13, page 27.

1.3. BLOCK 27

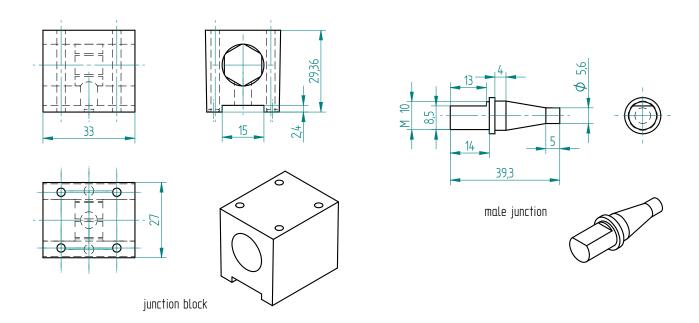


Figure 1.13: Drawing of the junction block parts $\frac{1}{2}$

Required Tools and Components

- 1x 3D printer;
- 1x nylon filament;
- 1x STL file;
- 2x male junction;
- 1x file;
- 1x gauge;
- 4x screw (M3, length=36mm);
- 1x alignator;
- 1x glue;
- 2x rods;
- 2x elastic;
- 1x hot glue.

Manufacturing Instructions

- 1. 3D print the **junction block** using the STL file and nylon filament.
- 2. File a flat surface of 8.5 x 13 mm on the threaded M10 part (on both junction block.
- 3. Mount the junction block on the alignator (slider) with the spacer and the four screw-3x.
- 4. Insert a **male junction** on each end of the **rod**.
- 5. Place the **slider** on the **rail** and both **rods** on the **v**.
- 6. Attach using two **elastic** bands.
- 7. Press the **rods** against the **junction block**.
- 8. Fix them in place with **hot glue**. See Figure 1.14, page 29 and Figure 1.15, page 29.

1.3. BLOCK 29

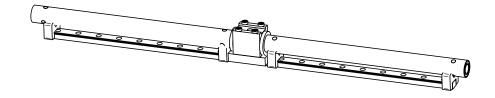


Figure 1.14: male junction aligning

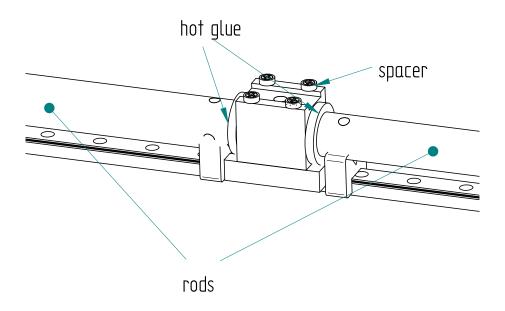


Figure 1.15: male junction aligning zoomed

9. Test the seal by blowing into the hole of the **junction block**.

- 10. Prepare the **glue**¹:
 - (a) Quantity hardener: 2 g;
 - (b) Quantity **resin**: 5 g;
 - (c) Quantity graphite powder: 1.5 g.
- 11. Pour the mixture into the **junction block**.
- 12. Cure for 24 hours at 20°C or 4 hours at 40°C.
- 13. Remove the **hot glue**.
- 14. Remove the four **screw-3x** and the **spacer**.

¹Adjust the quantity of **resin** and **hardener** according to the type of glue used.

1.3. BLOCK 31

1.3.3 belt

Drawing

See Figure 1.16, page 31.

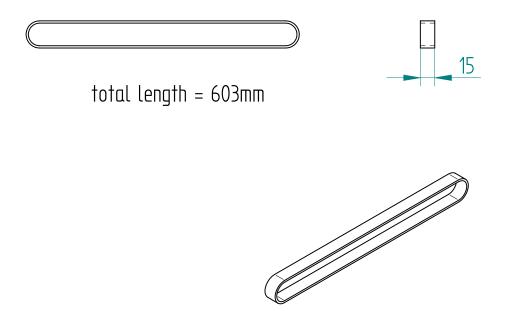


Figure 1.16: Drawing of the belt

Required Tools and Components

- \bullet 1x roll of belt standard HTD-5M;
- 1x double meter;
- 1x scissors.

Manufacturing Instructions

1. Cut a \mathbf{belt} with a length of 603 mm .

1.3.4 clamp

Drawing

See Figure 1.17, page 32.

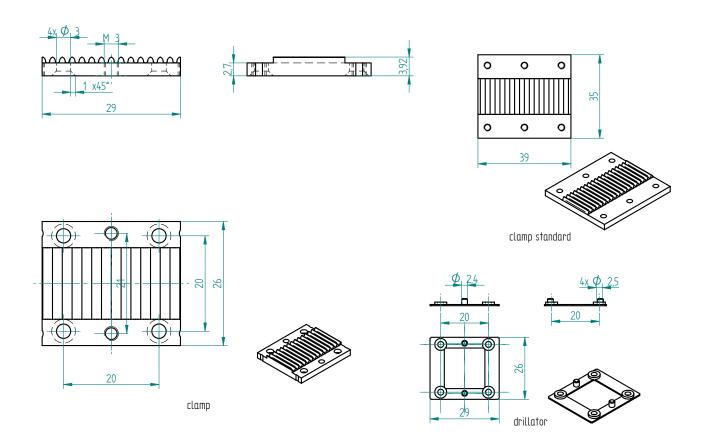


Figure 1.17: Drawing of the clamp

Required Tools and Components

- 1x clamp standard ;
- 1x 3D printer;
- 1x PLA filament ;
- 1x STL file ;
- 1x drillator;
- 2x clamp;
- 1x scriber;
- 1x file;

1.3. BLOCK 33

- 1x 2.5 mm drill bit;
- 1x 3 mm drill bit;
- 1x chamfer mill;
- 1x driller;
- 1x drill press;
- 1x gauge.

Manufacturing Instructions

- 1. 3D print the $\mathbf{drillator}$ using the provided STL file and PLA filament.
- 2. Clamp the **drillator** onto the **clamp standard**.
- 3. Scribe the outer dimensions.
- 4. Center punch the four holes.
- 5. Mill or cut the shape to size using a handsaw, according to the **Drawing** section.
- 6. Chamfer all sharp edges.
- 7. Drill the four holes using a 3 mm drill bit.
- 8. Chamfer all four holes: $1 \times 45^{\circ}$.

1.3.5 screw

These screws are used to assemble the **stop**, **belt**, **clamp**, and **junction block** onto the **slider**. Initially, the exact screw length cannot be determined. The objective is to ensure that the threaded portion engages as much as possible with the **slider**, so the **screw** holds securely.

Drawing

See Figure 1.18, page 34.

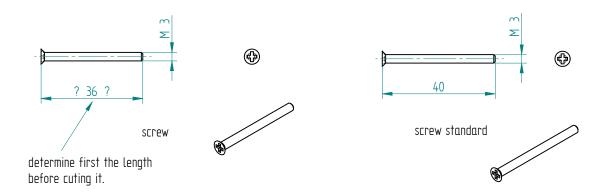


Figure 1.18: Drawing of the screw

Required Tools and Components

- 4x screw standard (M3, length = 40 mm);
- 1x junction block;
- 1x **belt**;
- 1x **clamp**;
- 1x depth gauge;
- 1x handsaw;
- 1x file;

1.3. BLOCK 35

- 1x gauge;
- 1x Phillips screwdriver;
- 1x bench vise.

Manufacturing Instructions

- 1. Place the **belt** between the **clamp** and the **junction block**.
- 2. Use a **screw-40** to loosely secure the **belt** and the **junction block** onto the **slider**. Tighten the screw until it reaches the end of the internal thread in the slider. Warning: It's normal if the **junction block** is not fully tightened—this screw is slightly too long.
- 3. Using a **depth gauge** or ruler, measure how much of the **screw** needs to be cut off.
- 4. Cut the **screw standard** to the correct length using a **handsaw**. Tip: Use a **bench vise** to hold the screw steady while cutting. Deburr the end with a **file** for a clean finish.
- 5. Based on the first test, the ideal screw length is approximately **36 mm**.

1.3.6 stop

Drawing

See Figure 1.19, page 36.

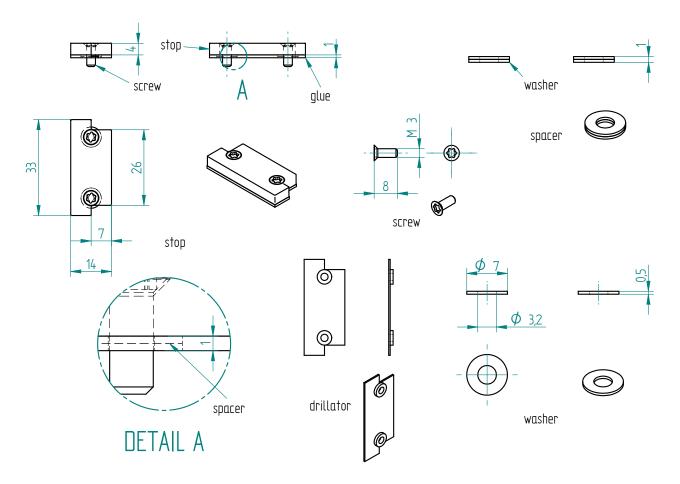


Figure 1.19: Drawing of the stop parts

Parts list

Table 1.6: Parts list of block/stop

quantity	name	specification	material
1	stop	14 x 4 x 33	aluminium
4	washer (2 spacer)	$3.2 \times 7 \times 0.5$	stainless steel
2	screw	$M3 \times 8$ mm Torx flat head screw	stainless steel
1	glue	-	Poliflex 444

Required Tools and Components

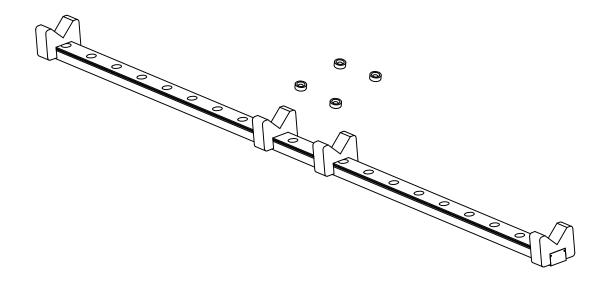
- $\bullet~1x~14~x~33$ aluminium sheet thickness 4 mm ;
- 2x clamps;

1.3. BLOCK 37

```
• 1x scriber;
```

- 1x drillator;
- 1x mill;
- 1x file;
- 1x 2.5 mm drill bit;
- 1x 3 mm drill bit;
- 1x chamfer mill;
- 1x driller;
- 1x drill press.

Manufacturing Instructions


- 1. Mill or file the **stop** (using the tool **drillator**) according to the dimensions shown in the **Drawing**;
- 2. Using the shaped tool **drillator**, drill both holes;
- 3. Drill and chamfer the two 3 mm holes.

1.3.7 Assembling Instructions

Required Tools and Components

- 1x glue pistol;
- 1x glue;
- 1x Torx screwdriver;
- 4x washer (2 spacer);
- 1x threadlocker.
- 1. Apply **threadlocker** to the four **screw**.
- 2. Secure the **belt** using the **clamp** and the four **screw-3x** onto the **slider**.
- 3. Apply mastic glue to the stop.
- 4. Ensure the two **spacers** are in place.
- 5. Apply **threadlocker** to the screws.
- 6. Fasten the **stop** onto the **clamp**.
- 7. Allow to cure for 24 hours.

1.3.8 alignator

The purpose of this tool is to align the **male junction** inside the **junction-bloc** during glueing. The **male junction** is screwed in the \mathbf{rod} the latter is placed on the \mathbf{v} .

Assemblies In the figure 1.20, page 39 we can see the **alignator** fully assembled with it's components.

1.3. BLOCK 39

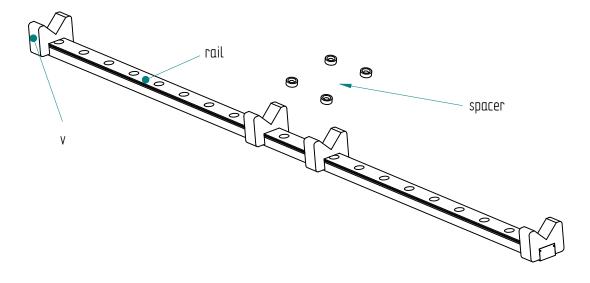


Figure 1.20: alignator assembled

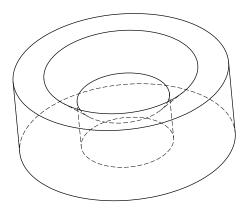
Roadmap This paragraph shows how to build the alignator.

It's not necessary to follow straight all these points one after another, but I think it's the most logical to do it in these steps I thinks :

- 1. prepare all stuff in the **Parts list** with the tools showed in the **Tools list**;
- 2. assemble the **alignator**.

Parts list In this pargraph we can find the whole list of parts that the perpendiculator needs, like :

- 1 x **rail** ;
- 4 x spacer;
- 1 x PLA (3d printing).


Tools list In this paragraph we can find the list of tools that we need to build the **alignator**, like:

- 3d printer;
- torks screwdriver.

 ${f Shaped-parts}$ In this paragraph we can find the shaped parts that the ${f alignator}$ requires, like :

- spacer;
- **v**.

spacer

This paragraph show how to build the **spacer**.

Drawing The figure 1.21, page 41, show the drawing of the **spacer**.

1.3. BLOCK 41

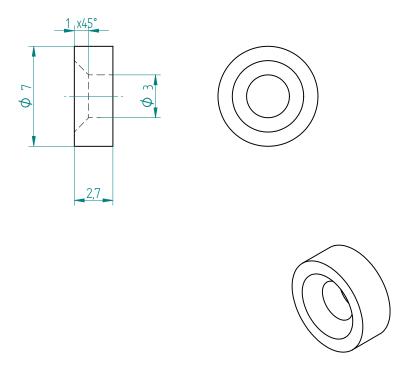
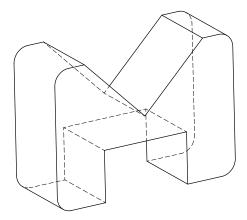


Figure 1.21: spacer drawing for alignator


Quantity 4;

Material PLA 3d printed.

Roadmap

- 1. copy the file named $UM2_spacer.gcode$ from the $3d_print-files$ folder to the $3d_printer$;
- 2. print the 4 spacer with a 3d printer.

 \mathbf{v}

This paragraph show how to build the ${\bf v}.$

Drawing The figure 1.22, page 42, show the drawing of the **spacer**.

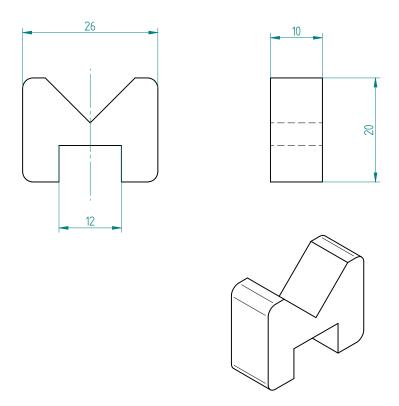


Figure 1.22: \mathbf{v} drawing for alignator

${\bf Quantity} \ 4 \ ;$

Material PLA 3d printed.

1.3. BLOCK 43

Roadmap

1. copy the file named $\mathbf{UM2_v.gcode}$ from the $\mathbf{3d\text{-}print\text{-}files}$ folder to the 3d printer ;

2. print the 4 $\mathbf v$ with a 3d printer.

1.4 motor

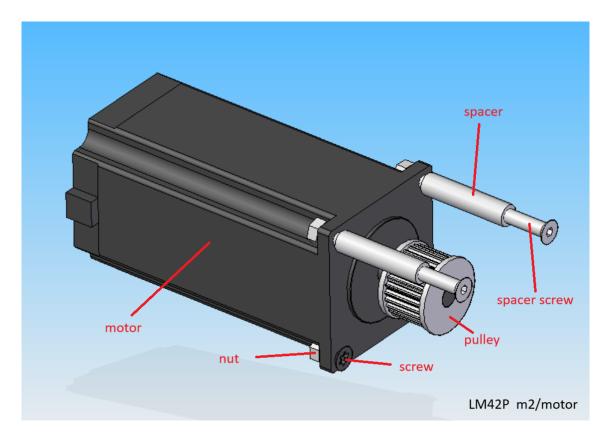


Figure 1.23: m2 motor parts

1.4.1 Parts list

Table 1.7: Parts list of **motor**

Qty	Part	Description	Material
1	motor	Nema 23 4.2A 3N.m 112mm	with cable
1	pulley	HTD M3 28T 16/8	aluminium
2	spacer	$M5 \times 8 \times 35 \text{ mm}$	aluminium
2	spacer screw	$\mathrm{M5} \times 65~\mathrm{mm}$ Torx flat head screw	stainless steel
2	screw	$M5 \times 12$ mm Torx flat head screw	stainless steel
4	\mathbf{nut}	M5	stainless steel

1.4.2 Drawing

See Figure 1.24, page 45.

1.4. MOTOR 45

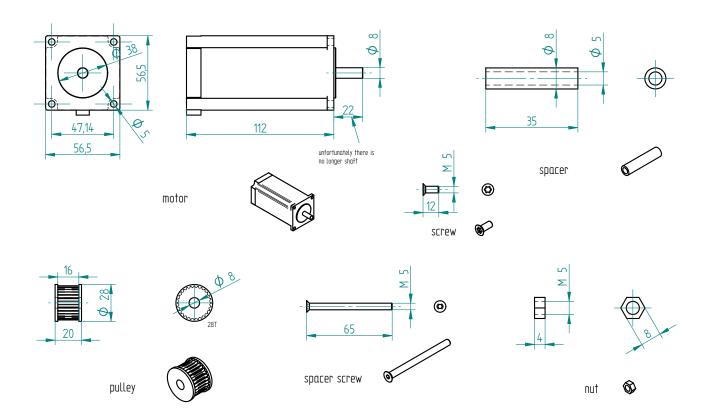


Figure 1.24: Drawing of the motor parts

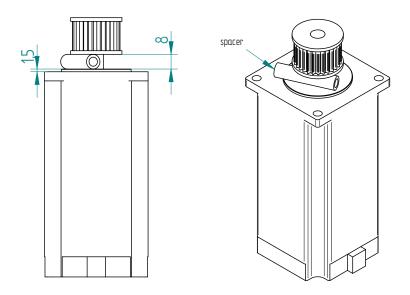


Figure 1.25: Position of the pulley on the motor shaft

1.4.3 Assembling Instructions

Required Tools and Components

- 1x **motor** ;
- 1x pulley;
- 1x spacer;
- 1x adjustable reamer, diameter 8 mm;
- 1x sandpaper;
- 1x acetone.
- 1x shaft glue (Loctite 238);
- 1. Test the **pulley** on the **motor** shaft. There should be a *slight gap* between them (for the shaft glue).
- 2. If there is no gap:
 - Use an adjustable reamer (diameter 8 mm) to carefully enlarge the hole in the **pulley** until the **pulley** fits with a slight gap.
- 3. Clean the shaft and the **pulley** with acetone.
- 4. Apply shaft glue to the shaft.
- 5. Press the **pulley** onto the **spacer**, using a **spacer** to ensure correct positioning (See Figure 1.25, page 46.
- 6. Let it cure for 4 hours.

1.5. IDLE PULLEY 47

1.5 idle pulley

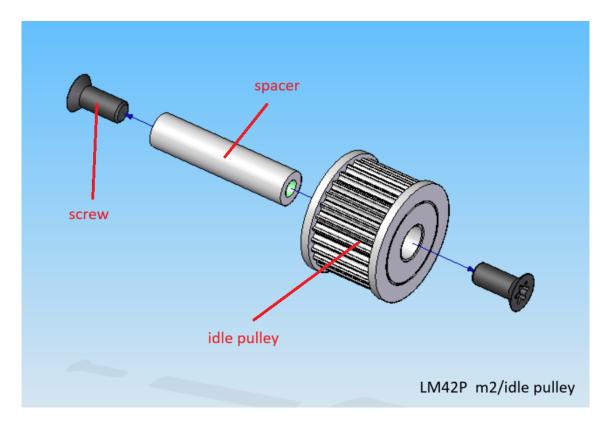


Figure 1.26: m2 idle pulley parts

1.5.1 Parts list

Table 1.8: Parts list of idle pulley

Qty	Part	Description	Material
1	idle pulley	HTD3 28T / 8	Aluminium
2	screw	$\mathrm{M5} \times 12~\mathrm{mm}$ Torx flat head screw	stainless steel
1	spacer	$M5 \times 8 \times 35 \text{ mm}$	Aluminium

1.5.2 Drawing

See Figure 1.27, page 48.

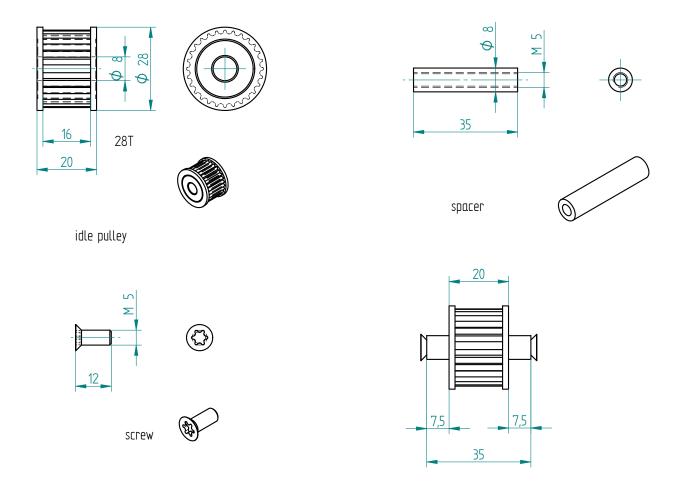


Figure 1.27: Drawing of the idle pulley parts

1.6. ATTACHMENT 49

1.5.3 Assembling Instructions

Required Tools and Components

- 1x idle pulley;
- 1x spacer;
- 1x depth gauge;
- 1x shaft glue (Loctite 238);
- 1x sandpaper;
- 1x driller;
- 1x M5 threader shaft;
- 1x acetone.
- 1. Test the **idle pulley** on the **spacer**. There should be a *slight gap* between them (for the shaft glue).
- 2. If there is no gap:
 - Insert the threaded shaft into the **spacer** and mount it in a drill.
 - Use **sandpaper** to carefully reduce the outer diameter of the **spacer** until the **idle pulley** fits with a slight gap.
- 3. Clean the **spacer** and the **idle pulley** with **acetone**.
- 4. Apply **shaft glue** to the **spacer**.
- 5. Press the **idle pulley** onto the **spacer**, using a depth gauge to ensure correct positioning (see position Drawing).
- 6. Let it cure for 4 hours.

1.6 attachment

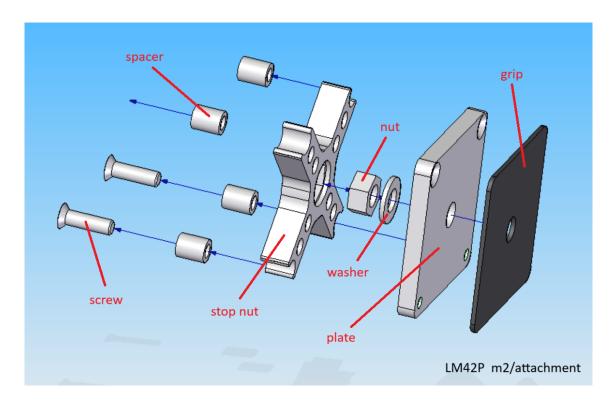


Figure 1.28: m2 attachment parts

1.6.1 Parts list

Table 1.9: Parts list of attachment

Qty	Part	Description	Material
1	plate	57 x 57 x 6	aluminium
1	stop nut	3D Printed	PLA
1	\mathbf{nut}	M8	brass
1	washer	$M8 \times 8 \times 35 \text{ mm}$	stainless steel
4	spacer	$8 / 5 \times 10 \text{ mm}$	aluminium
2	\mathbf{screw}	$M5 \times 18 \text{ mm}$ Torx flat head screw	stainless steel
1	grip	57 x 57	Griptape (skateboard)

1.6. ATTACHMENT 51

1.6.2 Drawing

See Figure 1.29, page 51.

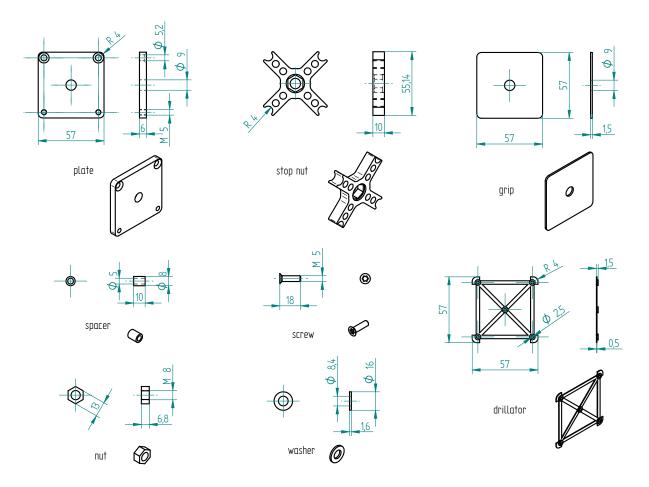
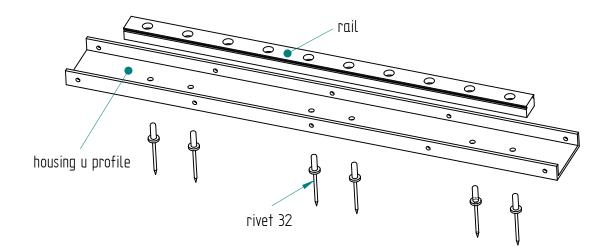


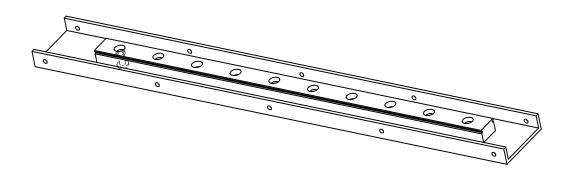
Figure 1.29: Drawing of the attachment parts

1.6.3 Manufacturing Instructions

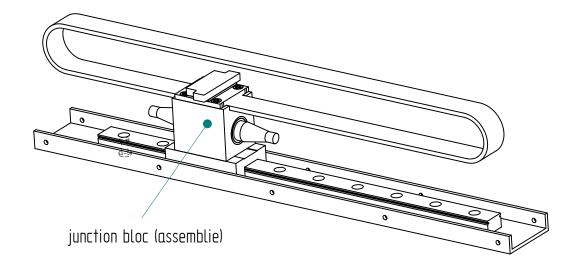
Required Tools and Components

- 1x aluminium plate 57 x 57 x 6 mm;
- 1x 3D printer;
- 1x PLA;
- 1x STL file (stop nut);
- 1x STL file (drillator);
- 2x clamp;
- 1x scriber;
- 1x file;

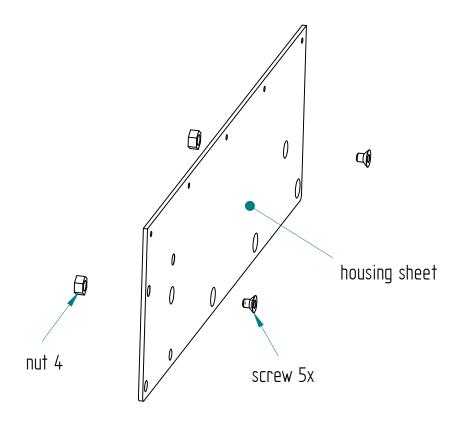

```
• 1x 2.5 mm drill bit;
• 1x 5.2 mm drill bit;
• 1x 4.2 mm drill bit;
• 1x 9 mm drill bit;
• 1x M5 tap;
• 1x Griptape 57 x 57 mm (use for skate board);
• 1x drill press;
• 1x driller.
1. 3D print the drillator;
2. 3D print the stop nut;
3. clamp the drillator on the aluminium plate;
4. scribe the 4x radii and the holes;
5. drill and tap all holes;
6. file the 4 radii;
7. file the sharp edges;
```

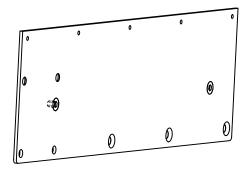

1.7 Assembling Instructions

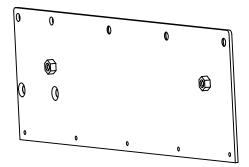
8. cut and drill the **grip**.

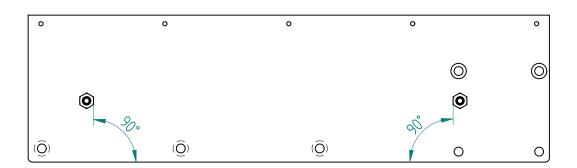

Remark All screws must be glued using threadlock glue.

- 1. Fabricate the shaped tools: the **tensionator** and the **drillator** (refer to section **tensionator** and **drillator**).
- 2. Rivet the rail onto the housing U-profile.

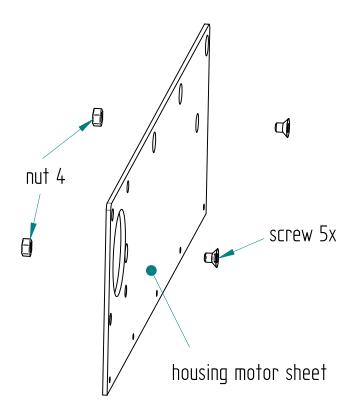


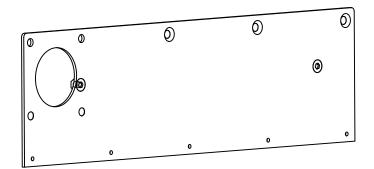


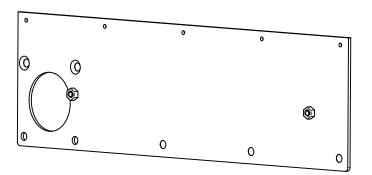

3. Slide the **junction block** (assembly) onto the **rail**.

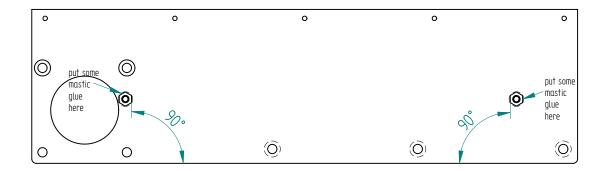


4. Mount the **stop screw nut**, ensuring proper alignment. Glue with **threadlock glue** and **mastic glue**. After curing, file the **5x screw** so it does not protrude.

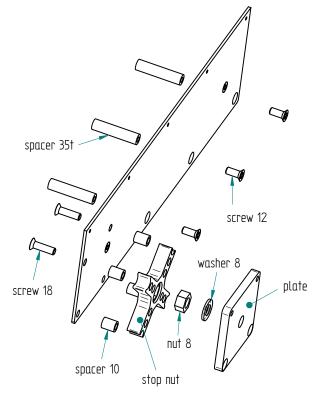


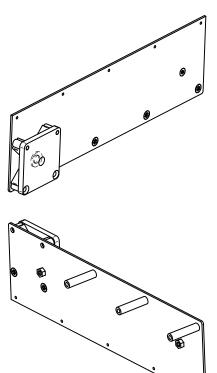






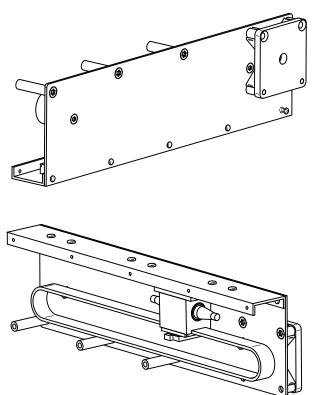
5. Repeat the previous step to mount the second **stop screw nut**.





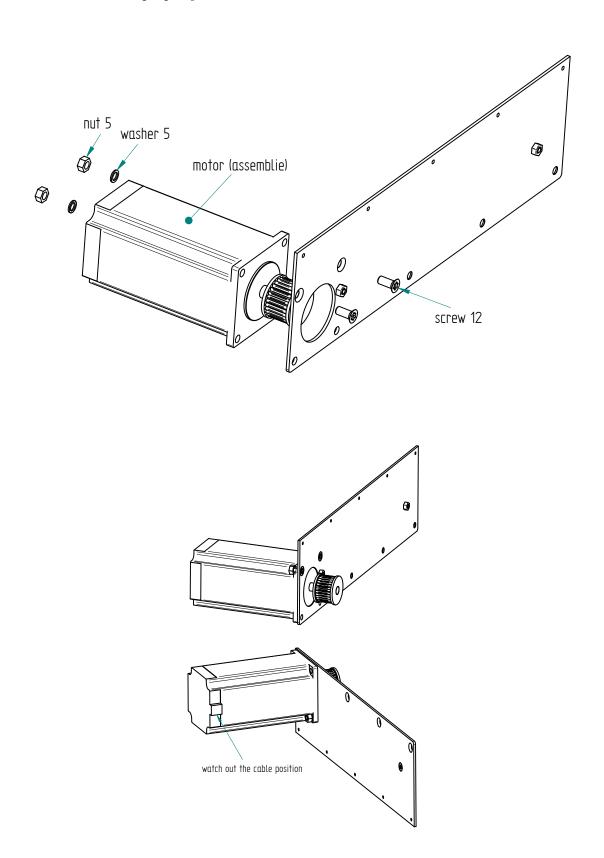
6. Assemble the following components:

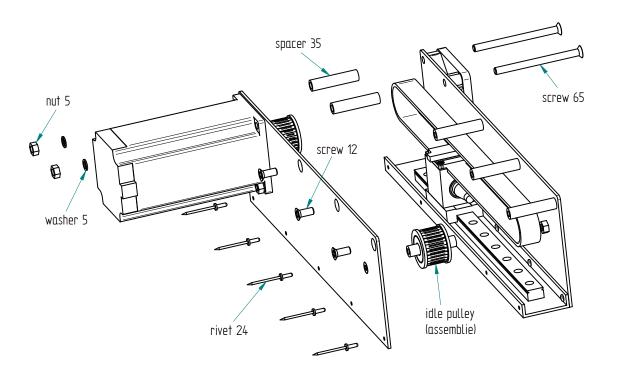
- $3 \times \text{spacer } 35$
- $3 \times \text{screw } 12$
- $4 \times \text{spacer } 10$
- $2 \times$ screw 18
- $1 \times \text{stop nut}$
- $1 \times$ **nut** 8
- $1 \times$ washer 8
- $1 \times plate$

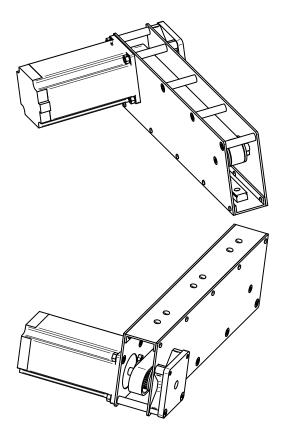


7. Rivet the following:

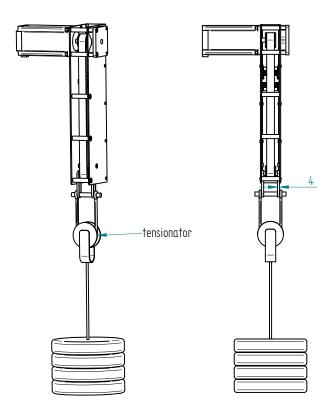
• $5 \times \text{rivet } 24$




- 8. Secure the ${f motor}$ (assembly) with:
 - 2 × screw **12**


- $2 \times$ washer 5
- 2 × nut 5

Ensure the cable is properly oriented.



- 9. Close the housing using the **idle pulley** (assembly), with:
 - 2 × screw **65**
 - $2 \times$ spacer 35
 - $2 \times$ washer 5
 - 2 × nut 5
 - 3 × screw **12**
 - $5 \times \text{rivet } 24$
 - 1 × idle pulley (assembly)

10. Attach the shaped tool **tensionator** to the **idle pulley** using $2 \times$ **colson** 4.

11. Place a weight of approximately 17 kg (e.g., 11×1.5 L bottles).

12. Mount the shaped tool **drillator**.

- 13. Mark drill points using a **2.5 mm drill** on both sheets.
- 14. Drill with a **5 mm drill**, then chamfer the holes. Test the depth using a screw.
- 15. Tighten the **idle pulley** using $2 \times$ **screw 12**.
- 16. Well Done you've finished the m2!

1.7.1 drillator

This section shows how to make the shaped tool named **drillator** The purpose of this tool is to point the holes of the **idle pulley** shaft during tensioning the **belt**.

Drawing

The figure 1.30, page 64, shows the drawing of the **drillator**.

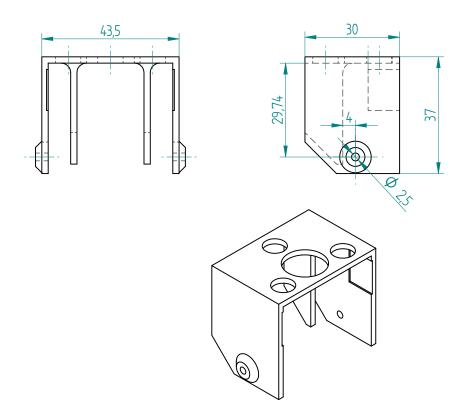
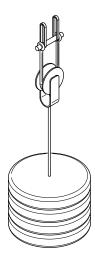


Figure 1.30: drawing of the **drillator**

Details


Quantity 1;

 ${\bf Material\ PLA}\ ;$

Manufacturing Instructions

1. 3d print the **drillator** the files are in the folder named **3d-print-files**.

1.7.2 tensionator

This section explains how to build the shaped tool called the **tensionator** for the assembly of the **m2** machine.

Drawing The figure 1.31, page 65, shows the drawing of the **tensionator** with all its elements.

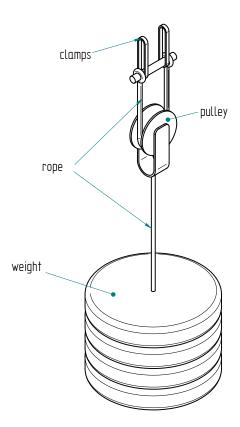
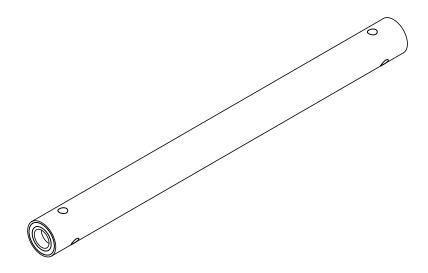
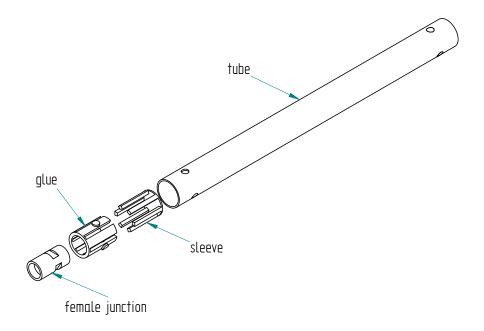


Figure 1.31: **tensionator** and its elements


Table 1.10: Parts list of **tensionator**


Qty	Part	Description	Material
1	pulley	D50 mm	_
1	colson	$4 \mathrm{\ mm}$	-
2	rope	-	-
1	weight	17 kg	_

Chapter 2

m2 accessories

2.1 rod

2.1.1 Parts list

Table 2.1: Parts list of the **rod**

Qty	Part	Description	Material
1	tube	20/18, length: 250 mm	carbon
1	female junction	$google: { t pool}$ cue junction	brass
1	sleeve	3D printed	PLA
1	glue	resin, hardner, graphite powder	

2.1. ROD 69

2.1.2 Drawing

See Figure 2.1, page 69.

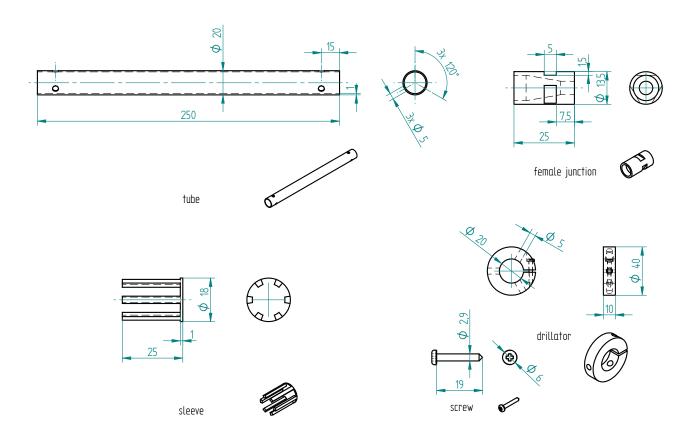


Figure 2.1: Drawing of the **rod** parts

2.1.3 Manufacturing Instructions

Required Tools and Components

- 1x carbon tube length: 500 mm;
- 1x paper;
- 1x tape;
- 1x handsaw;
- 1x perpendiculator;
- 1x drillator;
- 1x 5mm drill bit;
- 1x driller;

- 1x sandpaper;
- 1x 3D printer;
- 1x PLA filament;
- 2x female junction;
- 1x file;

tube

- 1. Scribe a mark at the exact middle of the carbon tube.
- 2. Wrap a piece of paper around the tube and secure it with tape (to guide the cut).
- 3. Use a handsaw to cut the tube into two equal parts.
- 4. Make both ends of each tube perpendicular using the **perpendiculator** tool.
- 5. Remove the sharp edges with sandpaper.
- 6. Drill the 6 holes using the driller and the **drillator** tool (refer to the Drawing section).
- 7. Remove the sharp edges again with sandpaper.

sleeve

- 1. 3D print the part using the files located in the 3d-print-files directory.
- 2. Chamfer the edges using a file.
- 3. Insert the female junction into the sleeve and gently push it into the tube. Adjust if there is too much friction or too large a gap.

female junction

1. File the three 5/1.5mm flats—see dimensions in the **Drawing** section.

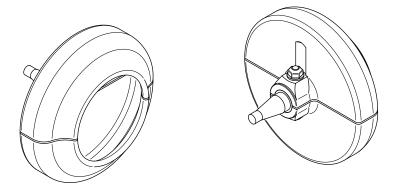
2.1.4 Assembly Instructions

Required Tools and Components

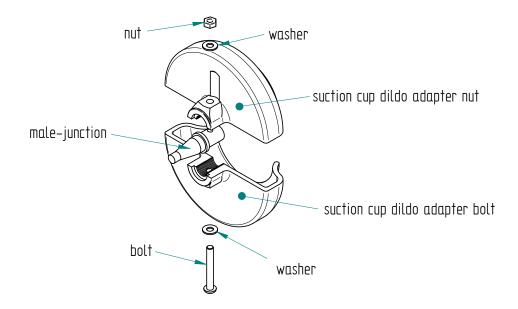
- 1x hot glue;
- 1x male junction;
- 1x tape;
- 1x scale;
- 1x glue :
 - resine:

2.1. ROD 71

```
Brand ?;
Type ?.
- hardner:
Brand ?;
Type ?.
```


• 1x graphite powder:

```
Brand Suter Kunstoff AG;Type West Graphit-Pulver 423.
```


- 1x clamp;
- 1x piano wire;
- 1x oven;
- 1x perpendicalor.
- 1. Screw the male junction into the female junction.
- 2. Seal the hole with hot glue.
- 3. Trim any excess hot glue using a scalpel.
- 4. Unscrew the male junction.
- 5. Thoroughly clean the outside and top of the **female junction** with acetone.
- 6. Seal the hole with tape.
- 7. Using a scalpel, carefully cut the tape around the **female junction**.
- 8. Insert the **female junction** into the **sleeve**, ensuring the flat side aligns with the canals inside the **sleeve**.
- 9. Push the assembly into the **tube** until the **female junction** is aligned with the end of the **tube**. Use a ruler for accuracy. Press on the tape it's normal for the **female junction** to move slightly inward due to the tape's thickness.
- 10. Wrap tape around the end of the **tube**, with the tape's edge extending about 1 mm above the end of the **tube**.
- 11. To glue two **female junctions**, prepare the following mixture:
 - 1.5 g of hardener;
 - 3.75 g of **resin**;
 - 1.125 g of graphite powder.
- 12. Prepare glue, as described in the shaped-parts section, and mix it with graphite powder.

- 13. Use a clamp to hold the **tube** vertically.
- 14. Pour the glue mixture above the tape, letting it slightly overflow past the end of the tube.
- 15. Use piano wire to enter each canal of the **sleeve**, removing any bubbles and ensuring **glue** flows properly into the canals.
- 16. Let the **glue** set for 2 hours.
- 17. After 2 hours, check the level of the composite. Add more if necessary.
- 18. Allow to cure for 24 hours, or place in an oven to accelerate curing.
- 19. Use the **perpendiculator** to grind the end of the **tube** until the tape sealing the **female junction** is removed (you should see a shiny ring appear).
- 20. Repeat the same steps for the other end of the **tube**.

2.2 suction cup dildo adapter

This section explain how to build the suction cup dildo adapter for the m2 machine.

2.2.1 Parts list

Table 2.2: Parts list of suction-cup-adapter

Qty	Part	Description	Material
1	suction cup dildo adapter nut	3D printed	PLA
1	suction cup dildo adapter bolt	3D printed	PLA
1	male junction	google: pool cue junction	brass

continued on next page \dots

		1
 con	tını	ued

Qty	Part	Description	Material
1	bolt	$M4 \times 30 \text{ mm}$	stainless steel
1	\mathbf{nut}	M4	brass
2	washer	M4	stainless steel

2.2.2 Drawing

See Figure 1.27, page 48.

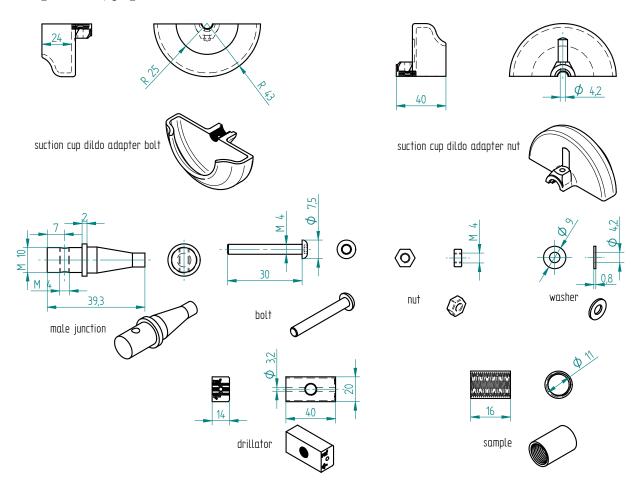


Figure 2.2: Drawing of the suction cup dildo adapter parts

${\bf 2.2.3} \quad {\bf Manufacturing\ Instructions}$

Required Tools and Components

- \bullet 1x 3D printer;
- 1x CAD software (to a juste M10 tap in case);
- 1x PLA;
- 1x STL file suction cup dildo adapter nut;

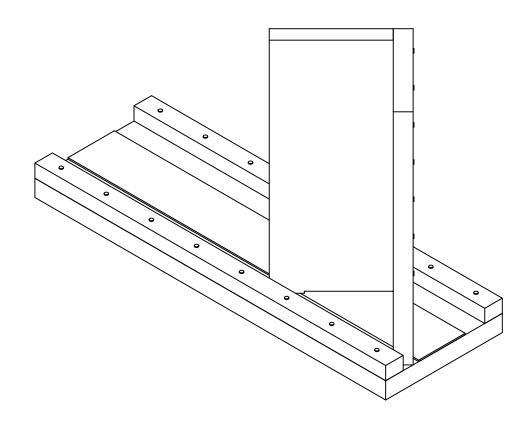
- 1x STL file suction cup dildo adapter bolt;
 1x STL file drillator;
 1x STL file sample;
 1x male junction;
 1x bolt;
 2x washer;
 1x nut;
 1x file;
 1x 3.2 mm drill bit;
- 1x M4 tap;
- 1x tap wrench;

• 1x chamfer mill;

- 1x boltdriver;
- 1x drill press;
- 1x driller;
- 1x water pump pliers;
- 1x allen key;
- 1x threaderlock glue;
- 1x bench vise.
- 1. Skip the next three steps if all 3D printers used print with the same accuracy as an Ultimaker.
- 2. 3D print the **sample**.
- 3. Test if the M10 tap fits into the **sample**.
- 4. Adjust the M10 tap size on the suction cup dildo adapter nut, suction cup dildo adapter bolt, and drillator 3D models as needed.
- 5. 3D print the suction cup dildo adapter nut, suction cup dildo adapter bolt, and drillator.
- 6. Screw the **male junction** into the **drillator** (the large diameter with a width of 2 mm should be flush against the reference plane). Use water pump pliers.
- 7. On a drill press, drill a 3.2 mm hole.

- 8. File or chamfer the hole.
- 9. Tap an M4 thread.
- 10. Assemble the **male junction** and **suction cup dildo adapter bolt** with the **bolt**. Don't forget to apply thread locker.

Chapter 3


Shaped Tools

Contents

3.1	perpe	ndiculator
	3.1.1	Roadmap
	3.1.2	Parts list
	3.1.3	Tools list
	3.1.4	Shaped parts
	3.1.5	Normalized parts
	3.1.6	Assemblies

In this chapter, I introduce the tools required to build all the machines described in this building plan. I present the **perpendiculator**—a tool used to make the ends or faces of a tube, or any part, perfectly perpendicular.

3.1 perpendiculator

Contents

3.1.1	Roadmap
3.1.2	Parts list
3.1.3	Tools list
3.1.4	Shaped parts
	base
	Roadmap 80
	Drawing
	guide
	Roadmap
	Drawing
	sandpaper
	Drawing
	face-1
	Roadmap 84
	Drawing
	face-2
	Roadmap
	Drawing
3.1.5	Normalized parts
	rectangular-wooden-list 87

	Drawing	87
	sandpaper	88
	nails	88
	Drawing	88
	amidon-glue	89
3.1.6	Assemblies	90
	Roadmap	90
	plane	91
	Worldmap	91
	slider	93
	Worldmap	93

In this section I introduce how to build the **perpendiculator**. This tool has two assemblies the **plane** and the **slider**. They have both a paragraph in which all details are explained. In the paragraph **Assemblies** the whole tool are assembled with the sub-assemblies **plane** and **slider**. And in the paragraph **Normalized parts** are showed all the normalized parts which are used for the **plane** and the **slider** (for example **wooden glue**, **nails**).

3.1.1 Roadmap

In this section we can find the roadmap to build the **perpendiculator**. It's not necessary to follow straight all these points after another, but I think it's the most logical to do it like this:

- 1. prepare all stuff in the Parts-list with the tools showed in the Tools-list;
- 2. assemble the **slider**;
- 3. assemble the base.

3.1.2 Parts list

In this section we can find the whole list of parts that the **perpendiculator** needs, like:

- 1x base size 133x400x19 in MDF;
- 1x rectangular-wooden-list size 15x20x1000 in beech for :
 - 2x guide.
- 1x sandpaper;
- 1x face-1 size 100x250x16 in MDF;
- 1x face-2 size 116x250x16 in MDF;
- 1x **nails** (box) size 1.4x30;
- 1x wooden glue;
- 1x amidon glue.

3.1.3 Tools list

In this section we can find the list of tools that we need to build the **perpendiculator**, like:

- 1x hammer;
- 1x drill press;
- 1x 1.4mm diameter drill;
- 2x clamps;
- 1x ruler;
- sandpager.

3.1.4 Shaped parts

In this paragraph we can find all the shaped parts of the **perpendiculator**, like:

- base;
- guide;
- sandpaper;
- face-1;
- face-2.

base

Here is shown the information for the shaped part base.

Roadmap

1. order in a carpentry.

That's all for this part.

Drawing See figure 3.1, page 81

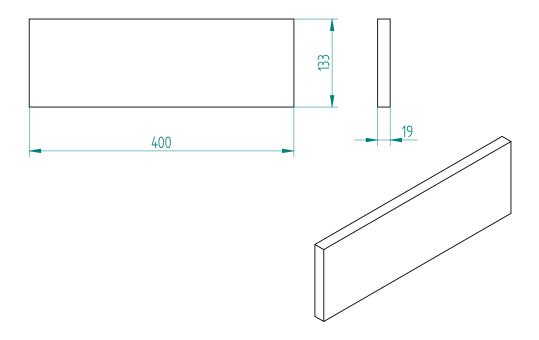


Figure 3.1: Shaped part: base for perpendiculator tool

```
quantity 1;
material MDF;
provider carpentry;
price ?.
```

guide

This section shows how to build the guide of the perpendiculator tool.

Roadmap

- 1. order the **rectangular-wooden-list** see section 3.1.5, 87;
- 2. ask at the carpentry to cut it at the good length (see the length on the figure 3.2, page 82);
- 3. drill the holes with diameter 1.4mm (see figure 3.2, page 82 for the positions).

Drawing See figure 3.2, page 82

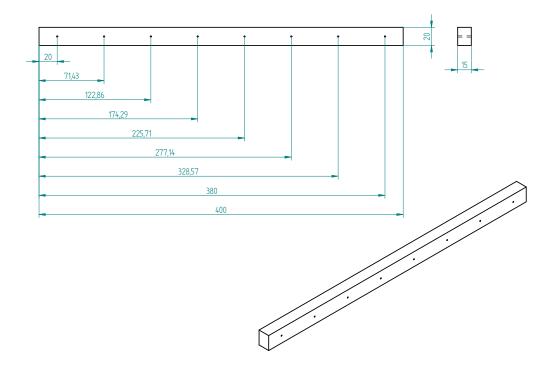


Figure 3.2: Shaped part : guide for perpendiculator tool

```
quantity 2;
material beech;
provider ironmongery;
price ? .
sandpaper
Drawing See figure 3.3, page 83
```

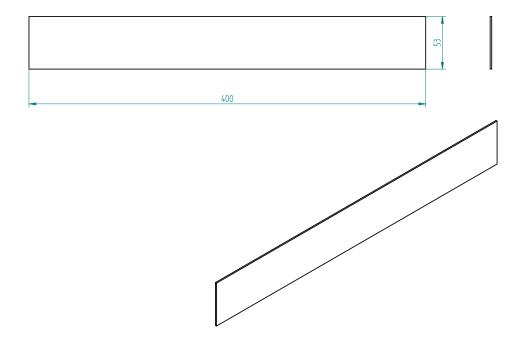


Figure 3.3: Shaped part : sandpaper for perpendiculator tool

```
quantity 1;
material emery granularity : 80;
provider ironmongery;
price ?.
```

face-1

Roadmap

1. order the part in a joinery see figure 3.4, page 84 for dimensions.

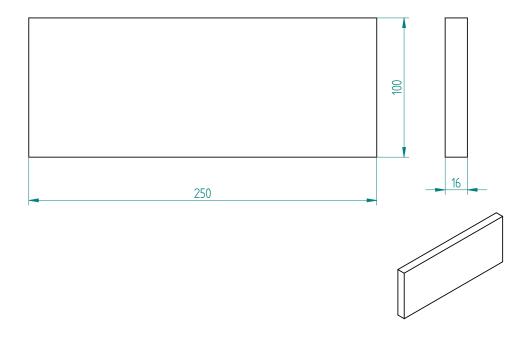


Figure 3.4: Shaped part : face-1-outsourcing for perpendiculator tool

Drawing This is how the **face-1** looks at the end. See figure 3.5, page 85

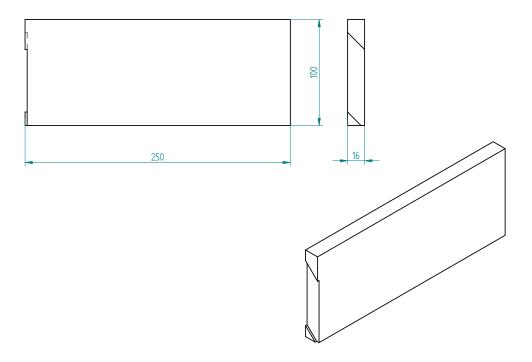


Figure 3.5: Shaped part : ${\bf face\text{-}1}$ for ${\bf perpendiculator}$ tool

```
quantity 1;
material MDF;
provider joinery;
price ?.
```

face-2

Roadmap

1. order the part in a joinery see figure 3.6, page 86 for dimensions;

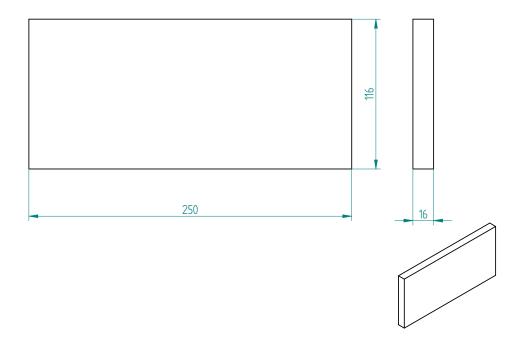


Figure 3.6: Shaped part : face-2-outsourcing for perpendiculator tool

2. drill the holes for dimension of the hole and positions see figure 3.7, page 87.

Drawing See figure 3.7, page 87

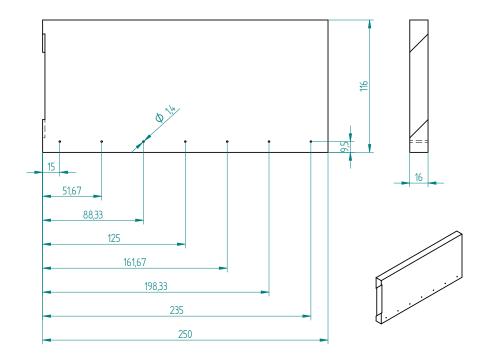


Figure 3.7: Shaped part : face-2 for perpendiculator tool

```
quantity 1;
material MDF;
provider ironmongery;
price ?.
```

3.1.5 Normalized parts

In this paragraph the normalized parts of the **perpendiculator** are showed. Like:

- sandpaper;
- nails.

rectangular-wooden-list

Here are some information of the **rectangular-wooden-list** which are used to build the **perpendiculator**.

Drawing See figure 3.8, page 88

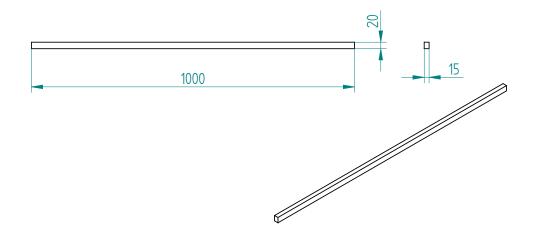


Figure 3.8: Normalized part: rectangular-wooden-list for perpendiculator tool

```
quantity 1;
material beech;
provider ironmongery;
price 5.20frs.
```

sandpaper

Here are some information of the **sandpaper** which are used for the **perpendiculator**.

Size ?;

Provider any ironmongery;

Price ?

nails

Here are some information of the **nails** which are used to build the **perpendiculator**.

Drawing See figure 3.9, page 89

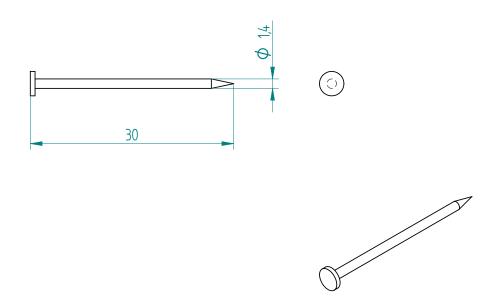
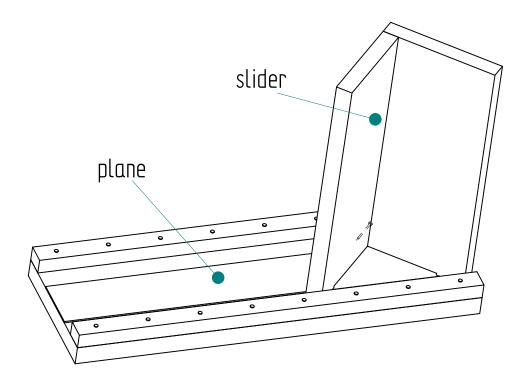
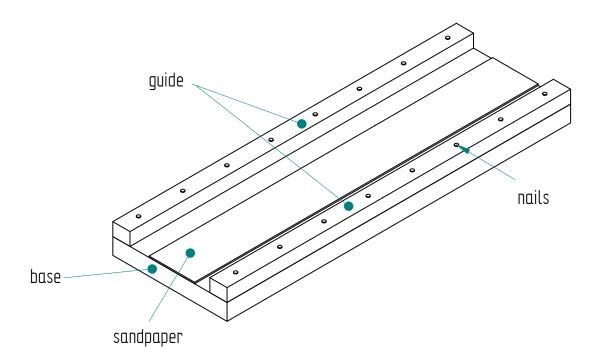



Figure 3.9: Normalized part : nail for perpendiculator tool

```
quantity 1 box;
material steel;
provider ironmongery;
price ?.
amidon-glue
quantity a bit;
provider any ironmongery;
price ?
```

3.1.6 Assemblies


After built all the ${f Shaped-parts}$ and get all ${f Normalized-parts}$, it's time now to assemble the sub-assemblies :

- plane;
- slider.

Roadmap

- 1. assemble the **plane**;
- 2. assemble the **slider**;
- 3. assemble the **perpendiculator** with **plane** and **slider**.

plane

In this section we explain how to assemble the **plane** which is a sub-assemblie of the **perpendiculator**.

Worldmap

1. with amidon glue glue the sandpaper at the right position (see figure 3.10, page 92);

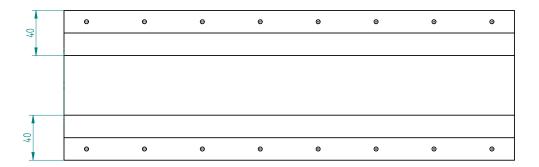
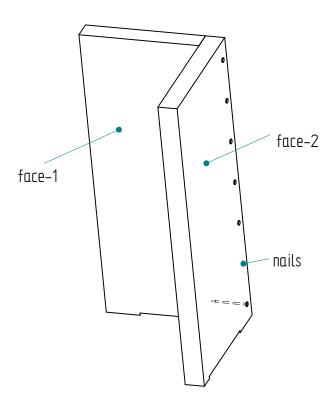



Figure 3.10: position of the sandpaper on the base

- 2. align the **guide** to the edge of the **base**;
- 3. once well aligned, **clamp** with two **clamps**;
- 4. put the **nails** in the holes of the **guide**;
- 5. hammer the **nails** maybe 2 or 3mm inside the **base**;
- 6. make a mark to know the direction of guide on the base;
- 7. remove the **clamps** and the **guide** from the **base**;
- 8. put some wooden glue on the guide;
- 9. then align the **guide** with the holes made with the **nails** in the **base**;
- 10. hammer the nails deep into the base to tight the guide;
- 11. repeat these steps for the second guide;

slider

In this section we explain how to assemble the **slider** which is a sub-assemblie of the **perpendiculator**.

Worldmap

- 1. put the **nails** in the holes of **face-2**;
- 2. align the face-2 on the face-1;
- 3. press both parts with a **clamp**;
- 4. hammer the **nails** 3 to 4mm into the **face-1**;
- 5. remove the clamps and unjoin face-1 and face-2;
- 6. put some **wooden-glue** on the **face-2**;
- 7. join both part again taking care that that the **nails** go into the hole of 3 to 4mm depth done at the previous point;
- 8. hammer the whole length of the **nails** so that both parts are pressed for glueing.